更新时间:2018-06-12 00:30作者:王新老师
二、注重思维考能力,强调思想方法
试卷以能力立意设计试题,多角度、多层次地考查了运算求解能力、推理论证能力、空间想象能力、抽象概括能力、数据处理能力、应用意识和创新意识。在此基础上,特别突出了对数学思维的全面、深刻考查,大量题目充分考查了观察、联想、类比、猜想等数学思维方法,对数形结合、分类与整合、函数与方程、化归与转化、特殊与一般、统计等数学思想进行了全面考查。理科5、10、15、21题,文科9、15、21题,既考查几何直观、联想、猜想、估算等直觉思维,又考查考生进行精确计算、严密推理等逻辑思维;理科5、12、16题,文科7、16题,密切联系考生社会生活经验,考查了运用概率统计知识分析、解决现实生活问题的能力和数学应用意识;理科13、18题考查空间想象能力,并对识图、想图、判图、画图、用图进行了全面考查,理科18题、文科17题第(Ⅰ)的设问具有开放性;文理科15题,考查了抽象概括、阅读理解、数学探究、直觉猜想、推理论证和创新意识,对数学思维品质进行了全面考查;文理科16-21等题重点考查运算求解能力和推理论证能力;文理科21题,要求考生具备高水平的抽象概括能力、推理论证能力、数学探究意识和创新意识,考查了多种数学思想与方法。
全卷注重考查学生对数学基本概念、重要定理等的理解与应用,注意控制全卷的运算量。理科3、7、8、10、14、15、16、17、19、20、21题,文科4、6、9、14、15、16、18、19、20、21等题,如果灵活运用数形结合、分类与整合、化归与转化、函数与方程等数学思想,就可简化解题过程、避免繁琐运算;文理科15、21题,虽然思维要求高,但在深刻理解问题本质的基础上,灵活运用数学思想方法,其解答并不复杂。这些问题构思巧妙、背景深刻、选材适当、设问灵活、切合中学教学实际,着重考查考生对知识的理解、迁移和应用,从而检测考生的思维广度、深度以及进一步学习的潜能,对于不同学习水平的学生具有很好的区分作用,有利于人才选拔。
三、注重应用考创新,弘扬数学文化
试卷从学科整体和思维价值的高度设置问题情境,注重知识的内在联系、交汇和应用。试题通过适当的交汇与综合,考查考生的创新意识。理科7题是充要条件与线性规划、解析几何交汇,理科10题是平面向量、解析几何与数形结合思想等交汇,文理科19题是数列、不等式与解析几何交汇,这些试题立意鲜明、情境新颖、设问灵活、解法多种多样,考查考生思维的灵活性、发散性。文理科21题,以二次函数、对数函数、指数函数、导数、不等式等知识为载体,考查考生综合运用数学知识、数学方法、数学思想的能力;该题思维量大,但运算量不大,对数学思维的灵活性、深刻性、创造性都有较高要求;解答这个问题,需要考生具有高层次的理性思维,具有较强的分析问题、探究问题和解决问题的能力。