更新时间:2018-12-14 23:04作者:李天扬老师
序列比对(Sequence Alignment)的基本问题是比较两个或两个以上符号序列的相似性或不相似性。从生物学的初衷来看,这一问题包含了以下几个意义:从相互重叠的序列片断中重构DNA的完整序列。在各种试验条件下从探测数据(probe data)中决定物理和基因图存贮,遍历和比较数据库中的DNA序列,比较两个或多个序列的相似性,在数据库中搜索相关序列和子序列,寻找核苷酸(nucleotides)的连续产生模式,找出蛋白质和DNA序列中的信息成分。
序列比对考虑了DNA序列的生物学特性,如序列局部发生的插入,删除(前两种简称为indel)和替代,序列的目标函数获得序列之间突变集最小距离加权和或最大相似性和,对齐的方法包括全局对齐,局部对齐,代沟惩罚等。两个序列比对常采用动态规划算法,这种算法在序列长度较小时适用,然而对于海量基因序列(如人的DNA序列高达10⁹bp),这一方法就不太适用,甚至采用算法复杂性为线性的也难以奏效。因此,启发式方法的引入势在必然,著名的BALST和FASTA算法及相应的改进方法均是从此前提出发的。
对比预测
基本问题是比较两个或两个以上蛋白质分子空间结构的相似性或不相似性。蛋白质的结构与功能是密切相关的,一般认为,具有相似功能的蛋白质结构一般相似。蛋白质是由氨基酸组成的长链,长度从50到1000~3000AA(Amino Acids),蛋白质具有多种功能,如酶,物质的存贮和运输,信号传递,抗体等等。
氨基酸的序列内在的决定了蛋白质的3维结构。一般认为,蛋白质有四级不同的结构。研究蛋白质结构和预测的理由是:医药上可以理解生物的功能,寻找dockingdrugs的目标,农业上获得更好的农作物的基因工程,工业上有利用酶的合成。直接对蛋白质结构进行比对的原因是由于蛋白质的3维结构比其一级结构在进化中更稳定的保留,同时也包含了较AA序列更多的信息。蛋白质3维结构研究的前提假设是内在的氨基酸序列与3维结构一一对应(不一定全真),物理上可用最小能量来解释。从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构。同源建模(homology modeling)和指认(Threading)方法属于这一范畴。同源建模用于寻找具有高度相似性的蛋白质结构(超过30%氨基酸相同),后者则用于比较进化族中不同的蛋白质结构。然而,蛋白结构预测研究现状还远远不能满足实际需要。